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Constant-Cutoff Approach to Magnetic Moments 
of Hyperons 

Nils  D a l a r s s o n  1 

Received September 1, 1994 

We calculate the magnetic moments of hyperons in the simplified CHK model, 
with the stabilizing term proportional to e -2 omitted, based on the constant- 
cutoff limit of the cutoff quantization method developed by Balakrishna, Sanyuk, 
Schechter, and Subbaraman, which avoids the difficulties with the usual soliton 
boundary conditions pointed out by Iwasaki and Ohyama. Thus we show that 
there is qualitative agreement with the experimental values and the accuracy is 
similar to that obtained with the complete CHK model. 

1. I N T R O D U C T I O N  

It was shown by Skyrme (1961, 1962) that baryons can be treated as 
solitons of a nonlinear chiral theory. The original Lagrangian of the chiral 
SU(2) it-model is 

where 

Ss = - ~  Tr O~U Or- U + (1.1) 

2 
U = ~ (or + i 'r.xt) (1.2) 

is a unitary operator ( U U  § = 1) and F~ is the pion decay constant. In (1.2), 
o" = o'(r) is a scalar meson field and ~ = ~( r )  is the pion-isotriplet. 
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930 Dalarsson 

The classical stability of the soliton solution to the chiral g-model 
Lagrangian requires an additional ad hoc term, proposed by Skyrme (1961, 
1962), to be added to (1.1) 

1 
~Sk = 32e 2 Tr[U+O~U, U+O~U] 2 (1.3) 

with a dimensionless parameter e and where [A, B] = A B  - BA. It was 
shown by several authors that, after the collective quantization using the 
spherically symmetric ansatz 

U0(r) = exp[iT.roF(r)] ,  r0 = r/r  (1.4) 

the chiral model, with both (1.1) and (1.3) included, gives good agreement 
with experiment for several important physical quantities [Adkins et aL 
(1983); see also Witten (1979, 1983a,b); for extensive lists of additional 
references see Holzwarth and Schwesinger (1986) and Nyman and Riska 
(1990)]. Thus it should be possible to derive the effective chiral Lagrangian, 
obtained as a sum of (1.1) and (1.3), from a more fundamental theory like 
QCD. On the other hand, it is not easy to generate a term like (1.3) and give 
a clear physical meaning to the dimensionless constant e in (1.3) using QCD. 

Mignaco and Wulck (1989) (MW) indicated therefore the possibility to 
build a stable single-baryon (n -- 1) quantum state in the simple chiral theory 
with the Skyrme stabilizing term (1.3) omitted. 

However, as pointed out by Iwasaki and Obyama (1989), the quantum 
stabilization method in the form proposed by Mignaco and Wulck (1989) is 
not correct since in the simple tr-model the conditions F(0) -- -or and F(c~) 
= 0 cannot be satisfied simultaneously. In other words, if the condition F(0) 
= -or is satisfied, then F(oo) --~ -or/2, and the chiral phase F = F(r) with 
correct boundary conditions does not exist. 

In Dalarsson (1991a), I suggested a method to resolve this difficulty by 
introducing a radial modification phase q~ = q~(r) in the ansatz (1.4) as follows: 

U(r) = exp[ i ' t ' roF(r)  + iq0(r)], r0 = r/r  (1.5) 

Such a method provides a stable chiral quantum soliton, but the resulting 
model is an entirely noncovariant chiral model, different from the original 
chiral ,r-model. 

In the present paper I use the constant-cutoff limit of the cutoff quantiza- 
tion method developed by Balakrishna et al. (1991; see also Jain et al., 1989) 
to construct a stable chiral quantum soliton within the original chiral (r- 
model. Then I apply this method to calculate the magnetic moments of 
SU(3)-octet baryons and show that there is qualitative agreement with the 
experimental values. 
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2. CONSTANT-CUTOFF STABILIZATION 

Substituting (1.4) into the action obtained using the Lagrangian density 
(1.1), we obtain the static energy of the chiral baryon 

Eo ='rr.~ F~2i~(t) dr[r2(dF~2+2sin2F][- \~rJ (2.1) 

In (2.1) we avoid the singularity of the profile function F = F(r) at the origin 
by introducing the cutoff e(t) at the lower boundary of the space interval r 

[0, m], i.e., by working with the interval r E [e, m]. The cutoff itself is 
introduced following Balakrishna et al. (1991) as a dynamic time-depen- 
dent variable. 

From (2.1) we obtain the following differential equation for the profile 
function F = F(r): 

d--r r2 = sin 2F  (2.2) 

with the boundary conditions F(e) = -'rr and F(oo) = 0, such that the correct 
soliton number is obtained. The profile function F = F[r; e(t)] now depends 
implicitly on time t through ~(t). Thus in the nonlinear or-model Lagrangian 

L = ~ Tr(O~U 3r +) d3x (2.3) 

we use the ans~itze 

U(r, t) = A(t)Uo(r, t)A+(t), U+(r, t) = A(t)U~(r, t)A+(t) (2.4) 

where 

Uo(r, t) = exp{i'r, roF[r; e(t)]} (2.5) 

The static part of the Lagrangian (2.3), i.e., 

L = 16 J Tr(VU. VU +) d3x = -E o (2.6) 

is equal to minus the energy E0 given by (2.1). The kinetic part of the 
Lagrangian is obtained using (2.4) with (2.5) and it is equal to 

L = -i6 Tr(O0U 3o U+) d3x = bx 2 Tr(O0A OoA +) + cD~(t)] 2 (2.7) 

where 

b = F z  sin2F y2 dy, 27r ~ 2[ dF'~2 2 c = v F ~  y ~ y ) y  dy (2.8) 
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with x(t) = [ • ( t ) ]  3/2 and y = r/e. On the other hand, the static energy functional 
(2.1) can be rewritten as 

i;ry   l + sid y Eo = ax 2/3, a = -~ t ~  l_ \ d y }  

Thus the total Lagrangian of the rotating soliton is given by 

L = c22 - a x  2/3 -4- 2 b x 2 ( ~ v ( ~ t  v (2.10) 

where Tr(00 A OoA +) = 2av6t ~ and a~ (v = 0, l, 2, 3) are the collective 
coordinates. In the limit of a time-independent cutoff (2 --~ 0) we can write 

OL ~t ~ _ L = a x  213 + 2bxZ6t~a ~ = a x  213 -~" 2--~X 2 J(J  + 1) H = OOt~ 

(2.11) 

where (j2) = j ( j  + 1) is the eigenvalue of the square of the soliton laboratory 
angular momentum. A minimum of (2.11) with respect to the parameter x 
is reached at 

ab ~-I  = ab 
x = J(J  + 1)J ~ J(J + 1) (2.12) 

The energy obtained by substituting (2.12) into (2.11) is given by 

E = g l) (2.13) 

This result is identical to the result obtained by Mignaco and Wulck, which 
is easily seen if we rescale the integrals a and b in such a way that a --~ (~! 
4)F~a and b --* ( ~ / 4 ) F ~  and introducef~ = 2-3/2F~. However, in the present 
approach, as shown in Balakrishna et al. (1991), there is a profile function 
F = F(y)  with proper soliton boundary conditions F(1) = - ~  and F(~) = 
0 and the integrals a, b, and c in (2.8)-(2.9) exist and are shown in Balakrishna 
et  al. (1991) to be a = 0.78 GeV 2, b = 0.91 GeV 1, and c = 1.46 GeV 2 for 
F~ = 186 MeV. 

Using (2.13), we obtain the same prediction for the mass ratio of  the 
lowest states as Mignaco and Wulck (1989), which agrees rather well with 
the empirical mass ratio for the A-resonance and the nucleon. Furthermore, 
using the calculated values for the integrals a and b, we obtain the nucleon 
mass M(N) = 1167 MeV, which is about 25% higher than the empirical value 
of 939 MeV. However, if we choose the pion decay constant equal to F~ = 
150 MeV, we obtain a = 0.507 GeV 2 and b = 0.592 GeV 2, giving exact 
agreement with the empirical nucleon mass. 
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At this point it is of interest to know how large the constant cutoffs are 
for the above values of the pion decay constant in order to check if they are 
physically acceptable. Using (2.12), it is easily shown that for the nucleons 
(J = 1/2) the cutoffs are equal to 

~0.22 fm for F.~ = 186 MeV (2.14) 
= [0.27 fm for F., = 150 MeV 

From (2.14) we see that the cutoffs are too small to agree with the size of 
the nucleon (0.72 fm), as we should expect, since the cutoffs rather indicate 
the size of the quark-dominated bag in the center of the nucleon. Thus we 
find that the cutoffs are of reasonable physical size. Since the cutoff is 
proportional to F~ 1, we see that the pion decay constant must be less than 
57 MeV in order to obtain a cutoff which exceeds the size of the nucleon. Such 
values of the pion decay constant are not relevant to any physical phenomena. 

3. THE REVIEW OF THE SIMPLIFIED CHK M O D E L  

Callan and Klebanov (1985) showed that a good description of the 
hyperon spectrum in the Skyrme (1961, 1962) model is obtained if the 
hyperons are treated as bound kaon-soliton systems. Callan, Hombostel, and 
Klebanov (1988) (CHK) successfully completed this program. The basic idea 
of their model is to treat strangeness separately from isospin in the Skyrme 
model, assuming that the vacuum is approximately SU(3)-symmetric i.e., FK 

F~. The strange baryons are generated by binding kaons in the field of 
"rotating" SU(2) solitons. Since there is no static field associated with the 
strangeness number, it is essential in this picture that there exist bound states 
in the kaon-soliton complex giving rise to hyperons. CHK showed that such 
bound states exist. A remarkable property of the kaons in this model is that 
after quantization they look like s-quarks, due to topological effects. This 
leads to a spectroscopy of hyperons quite similar to that of quark models. 

In the CHK approach the kaon-soliton field is written in the form 

u = u ~ 2 u K u ~  2 (3.1) 

where U~ is an SU(3) extension of the usual SU(2) skyrmion field used to 
describe the nucleon spectrum, and Ux is the field describing the kaons, 

U.~ = exp(2iF~lkfrrJ),  j = 1, 2, 3 (3.2) 

UK = exp(2iFglkaKa),  a = 4, 5, 6, 7 (3.3) 

The h. matrices are the familiar SU(3) matrices. 
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The Lagrangian density for a bound kaon-soliton system in the simplified 
Skyrme model, with the Skyrme stabilizing term (1.3) omitted, is given by 

F~ F~ 
= - ~  Tr O~U Ot'U § + - ~  (m2~ + 2m 2) Tr(U + U § - 2) 

+ - ~  F~(mZ~ - m~) Tr X8(U + U § (3.4) 

where m~ and mr are pion and kaon masses, respectively, and 

U-~= [O~ ~], U x = e x p { i  23/2 

In (3.5), u~ is the usual SU(2)-skyrmion field, given by (1.4), and F = F(r) 
is a radial function which, for m~ = 0, satisfies the differential equation 
(2.2). The two-dimensional vector K in (3.5) is the kaon doublet 

[ ~ ' ]  - -  
K =  /t o , K + =  [ K - K  ~ (3.6) 

In addition to the simplified Skyrme model action obtained using the Lagran- 
gian density (3.4), the Wess-Zumino action in the form 

iNc I dsx e ~ f ~  Tr(U+O~U U+O~U U+O~U U+O~U U+OvU) (3.7) 
S = -240,rr-------- 5 

must be included into the total action of a kaon-soliton system. In (3.7), Nc 
is the number of colors in the underlying QCD. 

We now substitute (3.1), with U~, and Ux defined by (3.5), into the total 
action of the kaon-soliton system, expand UK to second order in the kaon 
fields (3.6), and decompose the kaon fields (3.6) into modes with strangeness 
number S = - 1  as follows: 

K = ~ [gm(r)ei~~ + + Km(r)e-iOmtdtm] (3.8) 
m 

with am and/~m + the annihilation and creation operators for S = - 1  and S = 
+ 1 modes, respectively. Then we expand the kaon wave function Km(r) of 
S = - 1 mode in terms of vector spherical harmonics 

K(r) = ~] k~,L(r)Y~IL (3.9) 
ot,L 

to obtain the one-dimensional Lagrangian density for S = - 1  modes in the 
following form: 

dk + dk 
= it+it + -~r -~r + ih(r)(k+[c - It+k) - k+[m2 + Veff(r)]k (3.10) 
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where 

veer) = --~i l_\-~r}[(dF? + 2 s,n~l_;~j + F2 COS4 .~F (3.11) 

N c sinZF dF 
k(r) = 2~rZF2 rZ dr (3.12) 

The Hamiltonian density corresponding to the Lagrangian density (3.10) 
is given by 

dk + dk 
= II+II ik(r)(k+II - II+k) + k+[m 2 + Veff(r)]k 

dr dr 

+ k+k2(r)k (3.13) 

From (3.13) we obtain the radial wave equation for the lowest bound-state 
antikaon wave function u0 = rkp(r) in the form 

d2u~ Veff(r)uo + [to2 _ m } + 2tok(r)]u0 = 0 (3.14) 
dr 2 

where to is the lowest bound-state energy, and the antikaon modes are normal- 
ized according to 

8~r dr rE[to + k(r)]k*(r)kp(r) = 1 (3.15) 

In order to find the rotational modes of the kaon-soliton system we 
rotate the kaon and soliton fields as follows: 

K -~ a(t)K (3.16) 

U ---) A(t)UA+(t) 

where 

is an SU(2) subgroup of SU(3). The angular momentum operator of the 
rotating soliton I is given by 

I = - i l )  Tr(A+OoA "t) (3.18) 

where ~ is the moment of inertia of the soliton. The total angular momentum 
operator J is given by 

J = I + T  

1 ~+ ~ f)i~ij[);) = L + J+ + J -  (3.19) T = L + ~(a i "rija j - -  
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where T is the total angular momentum of kaons and antikaons, whereas J+ 
and J -  are spins of S = + 1 and S = - 1 modes, respectively. The strangeness 
operator is given by 

g = a ? a i -  /9i/)? (3.20) 

After the quantization the Hamiltonian for a baryon with N_ bound antikaons 
in the P state (L = 1) becomes 

1 
H = Eo + toN_ + ~ (I + cT) 2 

1 
= Eo + toN_ + ~-~ [cJ 2 + (1 - c)I 2 + c(c - 1)T 2] (3.21) 

where 

1~ = -~-  F ~  dr  r 2 sin2F (3.22) 

8 f ~ F (3.23) = 1 - 3 to dr  r2k*(r) cos 2 kp(r) C 

The eigenvalue of the kaon angular momentum T is related to the strangeness 
as T = IS I/2. Introducing the total angular momentum 

J = I + T (3.24) 

we obtain the total energy of the kaon-soliton system: 

1 
E = E0 + tolSI + ~ [cJ(J + l )  + (1 - c ) l ( l  + 1) 

1 c (c  - 1)181([81 + 2)] (3.25) +~ 

Using the constant-cutoff stabilization method, we obtain the following 
spectrum of hyperons in the simplified CHK model: 

4 { 3 a 3  [ 
E -- .,IS[ + g W cJ(J  + 1) + (1 - c) l ( I  + 1) 

+lc(c-1)ls[(IsI + 2)]} TM (3.26) 

and the following expression for the inertia of the soliton: 
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a = b -~  cJ(Y + 1 ) +  (1 - c)I(l + 1) 

1 -I / 3/4 
+ ~ c(c - 1)ISI(tSI + 2)]j '  

with a and b defined by (2.9) and (2.8), respectively. 

937 

(3.27) 

4. THE E L E C T R O M A G N E T I C  C U R R E N T  

The electromagnetic current J~ is obtained from the vector current Va~ 
(a = 1 . . . . .  8) as follows: 

J~ = V3~ + 3-11ZVs~ (4.1) 

The vector current V~ is obtained as the Noether current associated with the 
symmetry of the total action with respect to the transformation 

where e a (a = 1 . . . . .  8) is the set of eight infinitesimally small Noether 
parameters. As e ~ ---> 0, we obtain from (4.2) 

U ~ U + ie"[hal2, U] = U + e~gUa (4.3) 

where [A, B] = AB - BA. The Noether current associated with the transforma- 
tion (4.3) is 

V ~ = 2 T r  ~ U a  = 2 i  [~(0~U ) , U  (4.4) 

where S is the total action of the simplified CHK model. Thus we obtain 

Va~ = - i  ~ Tr(XoU+O~U + X.UO~U +) 

Arc %,,po- Tr(h~U+O~UU+O~ - h a U O V U + U O P U + U O t Y U + )  

(4.5) 
Substituting (4.5) into (4.1), we obtain the expression for the electromag- 
netic current. 
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5. THE MAGNETIC MOMENTS 

The spatial part of the electromagnetic current defined by (4.1) with 
(4.5) can be written as the sum of a transverse and a longitudinal component 
with respect to the direction r0 = r/r. The magnetic moment m on the other 
hand is defined by the expression 

J ,  = m x r (5.1) 

and it is determined by the transverse component of the electromagnetic 
current only. 

Using (4.1) and (4.5), we obtain the isoscalar (I = 0) contribution to 
the magnetic moment operator in the form 

. Tr(A*00A'r ~3 -sinZF dF 
m L 0 ( r )  = - t  4~ 2 r 2 dr 

F + F 2 Ct+'r3JftJ + bir3b+ k;(r)kp(r) cos 2 - (5.2) 
2r 2 2 

and the ~sovector contd.but~on (I = 13 

m3=l(r) ~ F2~ - T r (  A+'r3A'r3)8r 2 [ sin2F 

+ (fi+~ + [7~b[)k*(r)ke(r) cos ~ -~ 1 - 4 ~in 2 (5.3) 

In order to calculate the magnetic moments, we need to express the 
operators occurring in (5.2) and (5.3) in terms of the angular momentum 
operators, whose expectation values between baryon states are easily calcu- 
lated. The operators occurring in the isoscalar term (I = 0) can be written az 

1 13 - i  Tr(A+OoAr 3) = ~ (5.4) 

I (a:,r~a; + biT3D +) = j+3 _ j-3 (5.5) 

while the operators occurring in the isovector lerm (I = 1) can be written as 

-Tr(A+'r~A'r3) = g(Jc, l)J3J 3 (5.6) 

a?a, + fir,? = N+ + N_ (5.7) 

where for a system consi~tiag of a sol,ton and N_ bound antikaons we 
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Table I. Coefficients g(Jc, 1) in Soliton Quantum States 

939 

Jc I g(J~., 1) 

0 0 0 
1/2 1/2 8/3 

1 1 l 
3/2 3/2 8/15 

introduce the collective spin operator Jc = I - c J - .  The first few coefficients 
g(Jc, 1) in (5.6) are given in Table 1. 

The magnetic moment,  in units of  nuclear magneton e/(2MN), is 
defined by 

IX = g MN d3r  r2m3(r) (5.8) 

For  a system with a soliton and N_ bound antikaons the magnetic moment  
operator  thus becomes 

I x = IXlJc 3 + (IX2 + Ix3N-)g(Jc, I)J3c I3 + IX4 J-3 (5.9) 

where 

2Mn dr r z sin/F dF (5.10) 
IX1 = - 3 ' r r ~  d---r 

1 
IX2 = ~ Mtr (5.11) 

IX3 "~" T MNF2 dle r2k*(r)ke(r) c~ 1 - 4 sin -~ (5.12) 

IX4 = cixl - -~-4~r MNF~ dr r2k*(r)kp(r) cos 2 -2 (5.13) 

Introducing a dimensionless variable y = rl~, we obtain the following results 
for the quantities (5.10)-(5.13): 

2MN 
IX1 - 3,rr2FZ[3 e - I l l  (5.14) 

"IT MNF2e3 ~ (5.15) IX2 = ~ 

32 
IX3 = g-2, I3IX2 (5.16) ~p  
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32 
~1, 4 = C~II, 1 - -  ~ /4]-!,2 ( 5 . 1 7 )  

where a,  13, 11, 13, and 14 are dimensionless integrals given by 

I'~Fy2fdFI2+2sin2F]dy[ (5.18) ~x = 2 \ ~ y ]  

fl 8 y2 sin2F(y) (5.19) 13= ayg 

Ii = - dy y2 sinZF dF ~yy (5.20) 

f~ dy yZk*(y)kp(y) F ( F) 13 = COS2 2 1 -- 4 sin 2 (5.21) 

14 = dy y2k*(y)kp(y) cos 2 2 (5.22) 

The integrals (5.18)-(5.22) are universal for all baryons and in these y = 
r& is a dimensionless variable. 

The results obtained so far agree with the previous studies (Nyman and 
Riska, 1990) in the limit e ~ ~. In the complete Skyrme model, with the 
Skyrme stabilizing term proportional to e -2 included, the quantities Ixi (i = 
1, 2, 3, 4) are universal for all baryons. Furthermore, comparing (5.9) with 
the results for magnetic dipole moments of SU (3)-octet baryons given in 
Gasiorowicz and Rosner (1981), it is easily seen that Ix~, Ix2, and t~4 are 
proportional to ~u + ~xd, ~,  -- ~Xd, and ~s, respectively, where Ix,, lXd, and 
~, are magnetic moments of u-, d-, and s-quarks, respectively. The values 
of Ixi (i = 1, 2, 3, 4) that provide the best fit to the experimental data for 
the strange baryons and the exact agreement with the experimental data for 
the nucleons are given in Table II. With these values of Ixi (i = 1, 2, 3, 4) 
and using (5.9), we obtain the values of the magnetic moments of SU(3)- 
octet baryons given in Table II. 

Using now the quantum stabilization method described in Dalarsson 
(1993) or here, we minimize the energy of the soliton with respect to the 
dimensional scale parameter e. Thus quantities such as the moment of inertia 
~ and the soliton energy E become functions of the angular momenta as in 
equations (3.26)-(3.27). Substituting these functions of angular momenta into 
(5.14)-(5.17), we obtain the following results for the quantities ixi (i = 1, 2, 
3, 4): 
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Table II. Fitted Magnetic Moments of SU(3)-Octet Baryons in the CHK ModeP 

Particle p, ~EXP 

p (2.79) 2.793 
n ( -  1.90) - 1.901 
A -0 .61  - 0 . 6 1 3  --- 0.004 
~+ 2.47 2.42 -+ 0.05 
~0 0.79 - -  

E -  - 0 . 8 9  - 1 . 1 5 7  -+ 0.025 
,~0 - 1 . 3 0  - 1 . 2 5 0  - 0.014 

=-- - 0 . 6 3  - 0 . 6 9  --- 0.04 

~lxj = 0.89, Ix2 = 3.52, IX3 = - 1 . 0 2 ,  ~b 4 = - 1 . 23 .  

~L1 37r2 F~ ~ ~--Sj 

X [cJ 2 + (1 - c)I 2 + c(c - 1)T21-1/4 (5.23) 

P.2 - 8 f =  ~ [cJZ + (1 - c)I 2 + c(c  - 1)T2] 3/4 (5.24) 

32 
~3 = ~-~ 13~2 (5.25) 

32 I 
~1~4 ~--" C~bl - -  ~ ' ~  41.L2 (5.26) 

where et, 13, Ib 13, and 14 are dimensionless integrals given by (5.18)-(5.22) 
which remain universal for all baryons. However, we see from (5.23)-(5.26) 
that the coefficients Ix,. (i = 1, 2, 3, 4) are no longer universal for all baryons, 
but vary between different baryon families. Using (5.9), we obtain the matrix 
elements of the magnetic moment operator for SU(3)-octet baryons as func- 
tions of coefficients Ixi (i = 1, 2, 3, 4), as shown in Table III. 

The numerical calculation based on the fitted values Ixi(N) (i = 1, 2, 
3, 4) for nucleons given in Table II gives the values for [.L i (i ---~ 1, 2, 3, 4) 
for strange SU(3)-octet baryon families shown in Table IV. 

Using the expressions given in Table III and the numerical results for 
coefficients Ixi (i = 1, 2, 3, 4) given in Table IV, we obtain the numerical 
results for magnetic moments of SU(3)-octet baryon states and compare these 
with the experimental values in Table V. 

The calculated magnetic moments are in qualitative agreement with the 
experimental values, but the accuracy is not very satisfactory. The reason for 
this insufficient accuracy is the considerable simplification of the employed 
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Table III. Magnetic Moments of Baryons (for the Highest Spin State) 

Particle ~, 

p 

n 

A 

X+ 

XO 
X- 

=o 
= -  

�89 + }.~(N) 

�89 

}ix~(X) + }~2(X) + }ix3(X) - ~ , ( X )  
2 i x I ( ~ )  -- / i x 4 ( ~ )  

~ix,(x) - }~ : (x )  - ~ix3(x) - ~ix,(x) 
- ~ , ( ~ )  - ~ 2 ( -  =)  - ~ix3(~) + ~ ix , (~)  

Table IV. Coefficients ~.L i (i = 1, 2, 3, 4) for Some Baryon Families 

Par t i c le  IXl 1'1"2 ~J'3 IX4 

N (p, n) 0.89 3.52 - 1.02 - 1.23 
A 0.89 3.48 - 1.01 - 1.21 
~+, "5'. ~ ~ -  0.83 4.30 - 1.25 - 1.73 
~0, ~ -  0.84 4.24 - 1.23 - 1.67 

Table V. Numerical Results for the Magnetic Moments of Baryons 

Particle ix ixEXe 

p (2.79) 2.793 
n ( -  1.90) - 1.901 
A -0.60 -0.613 • 0.004 
E + 2.88 2.42 • 0.05 
E ~ 0.84 - -  
E-  -1.19 -1.157 -+ 0.025 
g0 -1.66 -1.250 - 0.014 
-~- -0.87 -0.69 • 0.04 

model ,  where  on ly  the so l i ton  energy  (and  no t  the ene rgy  o f  the k a o n -  
a n t i k a o n - s o l i t o n  sys t em as a whole)  is m i n i m i z e d  and  the d y n a m i c a l  t e rm 
in  the ro ta t iona l  pe r tu rba t ion  is on ly  eva lua ted  to first  order. 

6. C O N C L U S I O N S  

The  p resen t  paper  shows  the poss ib i l i ty  o f  u s i n g  the cons tan t -cu to f f  
approach  to the C H K  m o d e l  for  ca lcu la t ion  of  the m a g n e t i c  m o m e n t s  o f  
hype rons  wi thou t  the use  o f  the Skyrme  s tab i l i z ing  term,  p ropor t iona l  to e -2, 
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which makes the practical calculations very lengthy and painful. The results 
obtained so far are in qualitative agreement with the empirical values, but 
no attempt to calculate the magnetic moments  o f  nucleons has been made.  
Furthermore, the second- and higher-order contributions to the dynamical  term 
in the rotational perturbation are neglected. These aspects will be addressed in 
forthcoming numerical studies. 
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